
Journal of Engineering Mathematics35: 135–147, 1999.
© 1999Kluwer Academic Publishers. Printed in the Netherlands.

Radiation and diffraction analysis of the McIver toroid
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Abstract. A hydrodynamic analysis is performed of a special toroidal body which is known to have a nontrivial
solution of the homogeneous linearized free-surface boundary-value problem with oscillatory time-dependence.
This solution corresponds physically to unbounded resonant motion of the fluid in the ‘moon pool’ at the center of
the toroid. The added mass, damping, and elevation of the free surface in the moon pool are computed for a range
of wavenumbers, with singular results in the resonant regime.
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1. Introduction

In most cases of practical interest the linearized boundary-value problem for oscillatory mo-
tions of a floating body has a unique solution, for all frequencies and corresponding wave-
numbers. John [1] proved uniqueness, subject to the geometric restriction that no vertical line
intersects the submerged surface of the body more than once. Extensions of John’s uniqueness
proof have attracted frequent attention from mathematicians [2]. Counter-examples have been
constructed for periodic solutions which extend to infinity in one horizontal direction, and for
equivalent problems involving a compact body in a channel of finite width. Engineers have
been less interested in this issue, on the presumption that relevant physical problems have a
unique solution.

Recently it has been shown by McIver [2] that pairs of two-dimensional floating bodies can
be constructed, with the remarkable property that solutions exist with homogeneous boundary
conditions at a sequence of frequenciesω and corresponding wavenumbersk. The construc-
tion is very simple and uses a pair of point sources on the free surface separated by half a
wavelength (more generally an integer plus a half times the wavelength). The radiated waves
at infinity are canceled by interference, and the corresponding streamlines represent pairs of
floating bodies enclosing the sources.

A similar procedure has been used by McIver and McIver [3] to derive a family of axisym-
metric bodies from a three-dimensional ring source of radiusr = c in the free surface. There
are no axisymmetric radiated waves ifkc is a zero of the Bessel functionJ0(kr), and a family
of stream surfaces can be constructed which enclose the ring source. We shall refer to these as
‘McIver toroids.’

Since a nonzero solution exists near the body, and no radiated waves exist at infinity, these
solutions are associated physically with ‘trapped waves’. For brevity here we shall refer to
them as ‘homogeneous solutions’, since the boundary conditions are homogeneous and no
waves exist in the far field.
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136 J. N. Newman

Figure 1. Perspective view of the McIver toroid. This view is from above the free surface, looking down inside
the body. The free surface intersects the body at the outer and inner waterlines, which form the upper circular
boundaries of the submerged surface. In addition to the submerged surface, a 45◦-sector is shown of the interior
free surface which is used for the removal of irregular-frequency effects. This toroid is generated from the out-
ermost contour in Figure 2, with 32 cosine-spaced segments along the contour and 64 equally-spaced azimuthal
segments, giving a total of 2048 panels on the submerged body surface.

Figure 1 shows a particular example of a McIver toroid, where a homogeneous solution
exists atkc = j0,1 = 2·405. . . , the first zero ofJ0. The free-surface elevation associated with
this homogeneous solution is a slowly-varying function of the radius.

More generally, as noted by McIver and McIver [3], other families of body shapes can be
constructed by setting the ring source radius to correspond to higher zeros ofJ0. These will
have associated homogeneous solutions at higher frequencies and wavenumbers analogous to
the axisymmetric standing-wave modes in a closed basin. Similarly, Kuznetsov and McIver
[4] consider the case where the ring source corresponds to a zero ofJm and the homogeneous
solution is proportional to cosmθ , whereθ denotes the azimuthal angle about the vertical
z-axis.

Two geometric features of the McIver toroids are important in the context of a homoge-
neous solution. First, the maximum value of the outer radius occurs below the free surface,
violating the restriction of John’s uniqueness theorem. Secondly, there is an internal free sur-
face which is totally enclosed by the surrounding body, and open to the exterior fluid domain
beneath the body. We shall refer to this internal domain as a ‘moon pool’, following the jargon
of offshore technology.

Vessels used for offshore operations are frequently constructed with moon pools, which
generally are small relative to the horizontal dimensions of the body. Highly-tuned resonant
oscillations can occur within moon pools, with important practical effects in terms of both lo-
cal motions and global pressure forces. The first resonant mode (ordered in terms of increasing
frequencyω and wavenumberk) is analogous to a Helmholtz resonance with predominantly
vertical motion in the moon pool. It is usually referred to as the ‘pumping mode’ since the
free surface moves in a similar manner to a piston. The higher-order modes correspond to
standing waves within a vertical cylinder. If the moon pool is cylindrical, and its depthD is
large compared tob, the pumping mode occurs whenkD ' 1 [5, pp. 99–100]. This is the
mode of primary importance in most practical cases.

The radiation damping of typical moon pools is small, but nonzero. Thus it is possible
to compute the linear response characteristics, including the large-amplitude resonance, from
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Radiation and diffraction analysis of the McIver toroid137

three-dimensional panel methods. In the resonant regime these results may be unrealistic, due
to nonlinear and viscous effects, but the linear ideal-fluid analysis is still useful in predicting
the frequencies at which resonance occurs, and the relative magnitude, in relation to the body
geometry. Large numbers of panels must be used to obtain accurate results near the resonant
wavenumbers. Newman [6] has presented results for a truncated circular cylinder of radiusa

and draftD, with a coaxial moon pool of radiusb < a.
In this paper we describe numerical solutions of the radiation and diffraction problems for a

McIver toroid. One motivation for this work is to provide independent evidence that nontrivial
homogeneous solutions exist. In addition, we show how the existence of a homogeneous mode
affects the response of these bodies, and the numerical evaluation of relevant hydrodynamic
parameters. In the exact sense the solutions of both the radiation and diffraction problems are
nonunique, but for small perturbations of the body shape, or wavenumber, these problems are
well posed and a careful numerical analysis will yield results which can be interpreted in the
limiting case to apply to the McIver toroids.

For simplicity and brevity we restrict our attention to the case of an axisymmetric ring
source, and to the first zero of the Bessel functionJ0. This is the case which corresponds
to the pumping mode of a moon pool and is of the greatest practical interest. Higher-order
modes and nonaxisymmetric modes also require greater computational efforts due to the larger
values of the frequency and wavenumber. We expect that the resulting hydrodynamic response
characteristics are qualitatively similar.

Since the homogeneous solution corresponds to an undamped free-surface elevation in
the moon pool, any axisymmetric forcing at the same frequency is expected to give infinite
response. This argument applies to both the heave radiation problem and to the diffraction of
incident waves by the fixed body. Associated with this unbounded fluid motion one should
expect a corresponding infinite pressure. Thus, the vertical exciting force due to incident
waves is infinite, and similarly for the heave added-mass and damping coefficients. (At this
stage we leave open the possibility that only one of the latter coefficients is unbounded, if the
phase of the infinite pressure force coincides with either the velocity or acceleration of the
heave motions. It will be shown subsequently that this possibility does not occur.)

This heuristic estimate of the heave damping is contrary to what one might conclude based
on the fact that the homogeneous solution does not radiate waves in the far field. Thus, it
might be argued that the heave damping at the resonant wavenumber is bounded. However, it
is known from the Haskind relations that the heave damping coefficient of an axisymmetric
body is directly proportional to the square of the exciting force, which is unbounded. Thus, we
conclude that the heave damping coefficient of the McIver toroid is unbounded at resonance.
The numerical results presented below support this conjecture.

The paper is organized as follows. First we rederive the geometry of the McIver toroids by
a different numerical scheme. This complementary approach confirms the geometric results
of McIver and McIver [3], and also facilitates generalizations including a ring source which is
submerged, or in a fluid of finite depth. We use these results to construct discretized surfaces
in terms of small quadrilateral flat panels, as illustrated in Figure 1, which are input to a panel
program. Computations are performed to evaluate the added-mass, damping, and exciting-
force coefficients, and the moon-pool elevation. These four hydrodynamic parameters all
display singular behavior in the vicinity of the wavenumber where a homogeneous solution
exists. The magnitude of the singular features increases as the geometric discretization is
refined. This numerical evidence supports the fact that a homogeneous solution exists for the
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138 J. N. Newman

exact body shape, and also permits us to study the hydrodynamic characteristics in the vicinity
of resonance.

The computations here are performed by means of the low-order panel program WAMIT.
A more effective procedure could be adopted, based on an axisymmetric code similar to those
described by Hulme [7] and Fernandes [8], but this would require special development of an
appropriate code.

2. Geometrical construction

The first task is to consider the velocity induced by a ring source of radiusc. Except where
otherwise noted the fluid depth is assumed infinite, and the ring source is in the plane of the
free surface. The wavenumberk is fixed, withkc = j0,1. Nondimensional coordinates are used
hereafter, withc = 1. Thus, the ring source is a distribution of point sources around the unit
circle.

In [3] the velocity potential for a ring source is evaluated from the special integral repre-
sentation derived by Hulme [7]. The integration around the circle is carried out analytically,
but the remaining semi-infinite integral in wavenumber space is evaluated numerically with a
truncation correction. A complementary procedure is followed here, to take advantage of the
subroutine for a point source based on the algorithms described in [9]. The contributions from
the Rankine singularity 1/R and its image above the free surface are expressed by elliptic
integrals. The remaining part of the free-surface point source is integrated around the ring
using an adaptive Gauss–Chebyshev quadrature. The convergence tolerance of this scheme is
10−4.

Figure 2. Contours of cross-sections generated by a
ring source with unit radius in the free surface, in a
fluid of infinite depth.

Figure 3. Contours of cross-sections generated by a
ring submerged at the depthζ below the free surface.
Proceeding from the outermost to the innermost sec-
tion the corresponding depths areζ = 0, 0·2, 0·25,
0·26, 0·265, 0·269. The fluid depth is infinite.

The oscillatory source strength is defined to beq(t) = Re(eiωt ), where Re denotes the real
part, and the velocity potential is expressed as Re(φeiωt ). The potential factorφ is generally
complex. However, whenJ0(kc) = 0, there are no radiated waves in the far field, and the
residue from the contour-integral representation of the potential is equal to zero. Thus,φ and
its derivativesφr, φz are real. Here (r, θ, z) are circular cylindrical coordinates, with thez-axis
positive downwards andz = 0 the plane of the free surface. The streamlines, defined by the
relationφr dz− φz dr = 0, can be found by integration of either of the equivalent differential
equations

dr/dz = φr/φz, (1)
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Radiation and diffraction analysis of the McIver toroid139

dz/dr = φz/φr . (2)

The objective here is to solve (1) or (2) for the shape of the submerged body cross-section
r = R(z) between the inner and outer waterlinesR(0) = b andR(0) = a. Since the body
must enclose the ring source atr = 1, it follows thatb < 1 < a. The integration of (1–2) is
started at a specified pointR(0) = b < 1, and either (1) or (2) is selected so that the right-hand
side is of magnitude6 1. Runge–Kutta integration is used with a prescribed finite differential
increment1. If |φr | < |φz| (1) is solved, with|δz| = 1, and conversely for (2) with|δR| = 1,
Initially δz andδR are positive; their signs are reversed at the points of maximum draft and
maximum radius, respectively. In the last step, whereR(0) = a is evaluated,1 is reduced to
avoid overshooting the free surface. The opposite procedure, starting ata and integrating to
b, is used to find the limiting cases described below, where the streamlines are tangent to the
planez = 0 ata = 1.

The accuracy of this scheme is limited by the subroutine for the free-surface Green func-
tion, which has estimated errors for the spatial derivatives on the order of 10−4 or 10−5. The
geometrical convergence has been measured in terms of the computed value of the outer radius
R(0) = a. For this radius the results from both 2nd and 4th-order Runge–Kutta algorithms
differ by less than 0·0015 when1 = 0·01, with practically no improvement for smaller
values of1. Comparison has been made for the caseb = 0·2 with computations provided by
P. McIver (private communication) based on the method described in [3]. The results agree
within graphical accuracy at all points along the contour. Maximum differences on the order
of 0·001 occur at the outer radius.

Figure 2 shows the family of computed cross-sections for values ofb between 0·2 and
0·4. At a maximum limitb ∼ 0·407 the slope dz/dr → 0 at the outer waterline. For larger
values ofb the streamlines do not enclose the source ring and hence cannot be interpreted as
possible body surfaces. This is consistent with the limitkb = 0·98 given by Kuznetsov
and McIver [4].

Similar computations have been made for a ring source submerged at a depthζ . The results
for b = 0·2 are shown in Figure 3. As the submergence increases there is little change in the
contours initially, but asζ approaches its limiting value the slope dr/dz changes sign near the
outer waterline. For larger submergence the contour no longer encloses the source.

The same computational scheme can be used for a fluid of finite depth. Figure 4 shows the
resulting contours for a ring source in the free surface with inner radiusb = 0·2, and fluid
depthh = (0·36,0·5,1·0,2·0,∞). As the depth is decreased the slope at the inner radius is
practically unchanged, but the draft and outer radius are reduced substantially. The limiting
maximum value ofb is shown in Figure 5, as a function of the depth.

3. Radiation and diffraction analysis

In the radiation and diffraction problems the toroid is forced in oscillatory vertical heave
motions, or fixed in the presence of plane incident waves, respectively. The corresponding
boundary-value problems are well known, and briefly summarized as follows. The potentialφ

is a harmonic function of(r, θ, z) in the domain of the fluid. On the unperturbed free surface
the linearized boundary conditionω2φ−gφz = 0 is satisfied, whereg denotes the gravitational
acceleration. The potential vanishes asz → ∞ in a fluid of infinite depth, or satisfies the
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140 J. N. Newman

Figure 4. Contours of cross-sections generated by a
ring source with unit radius in the free surface, in a
fluid of depthh. Proceeding from the outermost to the
innermost section the corresponding depths areh =
∞, 2·0, 1·0, 0·5, 0·36.

Figure 5. Limiting maximum value of the inner
radiusb as a function of the fluid depthh.

boundary conditionφz = 0 on the bottomz = h in a fluid of finite depth. In the heave
radiation problem the normal velocityφn = iωnz on the body surface, wherenz is the vertical
component of the unit normal vector, and the heave velocity is defined as Re(iωeiωt ). In
the diffraction problemφn = 0 on the body surface. The radiation conditionφr ' −ikφ is
imposed asr →∞ for the radiation potential, and for the scattered componentφ − φI in the
diffraction problem, whereφI is the potential of the incident plane wave.

Following the boundary-integral-equation method, we derive the potential on the body
surface as the solution of an integral equation which follows from Green’s theorem. The
potential of a point source beneath the free surface is used as the Green function, reducing
the domain of the integral equation to the body surface. However, this reduction leads to the
existence of a discrete set of irregular frequencies where the solution of the integral equation is
nonunique. The irregular frequencies require special attention since they may be interspersed
with the physically relevant resonances of the McIver toroid.

Homogeneous solutions of the integral equation exist at the irregular frequencies, although
the solution of the full boundary-value problem is generally unique under these circumstances.
The nonuniqueness of the integral equation is associated with the complementary boundary-
value problem in theinterior of the body with the same free-surface boundary condition on
z = 0 and a homogeneous Dirichlet conditionφ = 0 on the inside surface of the body below
z = 0. (This is the nonphysical domain inside the body, not to be confused with the fluid in
the moon pool which is a part of the external domain outside the body surface.) The irregular
frequencies have no physical significance, and it is necessary to remove their influence from
the numerical solution. This can be achieved by extending the domain of the integral equation
to include the planez = 0 inside the body, where the additional boundary conditionφz = 0 is
imposed, as described by Leeet al. [10].

We may estimate the values of the irregular frequencies by considering the simpler case of
a truncated circular cylinder with outer radiusa, moon-pool radiusb, and draftD. It follows
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Table 1. Number of panels on the body, interior
free surface, and total, for the three discretiza-
tions used.

Body panels 512 2048 8192

Free-surface panels 384 1600 6656

Total panels 896 3648 14848

from separation of variables that the complementary potential can be expanded in terms of the
eigenfunctions(

Jm(κr)

Ym(κr)

)(
cosmθ

sinmθ

)
sinh κ(z−D).

Since this potential must vanish onr = a and r = b, the wavenumberκ is a root of the
equation

Jm(κa)Ym(κb)− Ym(κa)Jm(κb) = 0. (3)

The corresponding frequencies are determined from the interior free-surface condition in the
form

ω2 = gκ coth κD. (4)

To approximate the particular toroid used below we setb = 0·2, a = 2·5, andD = 1·0. In
this case the first two roots of (3) form = 0 areκa = 3·22 and 6·69. In the case of infinite
fluid depth the corresponding values of the exterior wavenumberk = ω2/g arek = 1·51 and
2·81.

The panel code WAMIT is used to compute numerical solutions of the integral equation.
For this purpose the body surface is replaced by a finite numberN of flat panels, and the po-
tential is assumed to be constant on each panel. The integral equation is solved by collocation
at the panel centroids, leading to a linear system ofN algebraic equations for the potential
on each panel. The code includes an option to solve the extended integral equation including
the interior free surface, to permit removal of the irregular-frequency effects. Except where
otherwise stated, this option has been used for the results presented here.

The results presented below are for the toroid shown in Figure 1. Three discretizations are
used with 512, 2048, and 8192 panels on the submerged body surface. In the computations
where irregular-frequency effects are removed the free surface inside the body is discretized
with the same azimuthal subdivision. The radial subdivision is nonuniform with the width
of the panels adjacent to the inner and outer waterlines equal to the width of the contiguous
panels below the outer waterline, and with cosine spacing used to increase the width of the
intermediate panels in a continuous manner. The total number of panels including both the
physical submerged body surface and the interior free surface is shown in Table 1, for each of
the three discretizations. In the computations two planes of geometric symmetry are imposed,
corresponding toθ = (0, π) andθ = ±π/2. Only the component ofφ which is symmetric
about both planes is computed, since this is sufficient to evaluate the vertical force coefficients
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142 J. N. Newman

Figure 6. Heave added-mass (a) and damping (b) coefficients. The dashed curves include irregular-frequency
effects, which are removed in the solid curves. Both curves are based on computations using the discretization
shown in Figure 1 with 2048 panels on the body. The×marks represent computations with a total of 8192 panels
on the body, and with the irregular-frequency effects removed.

and the free-surface elevation atr = 0. Thus the number of unknowns is one-quarter of the
total number of panels.

The principal hydrodynamic parameters evaluated include the heave added-mass and damp-
ing coefficients, exciting-force, and the free-surface elevation at the center of the moon pool
in the diffraction problem. The added-mass and damping coefficients are nondimensionalized
by the factorsρc3 andρc3ω, respectively, whereρ is the fluid density andc the radius of the
ring source. The exciting force is nondimensionalized by the factorρgc2A, whereA is the
incident-wave amplitude. The free-surface elevation is nondimensionalized byA.

Figures 6–7 show the values of the added mass, damping, and moon-pool elevation for
wavenumbers in the range(0< kc < 4). Between 100 and 200 closely-spaced wavenumbers
have been used for these computations, to define the details shown. Two sets of curves are in-
cluded, where the effects of irregular frequencies are present (dashed) and where these effects
are removed (solid), to emphasize the distinction between the irregular frequencies and the
physically relevant moon-pool resonance. The resonance, which occurs near the theoretical
valuek = j0,1, is present in both sets of curves. The two extra singularities in the dashed
curves are due to the irregular-frequency effects, and coincide with the estimatesk = 1·51
and 2·81 based on (4).

Figure 8 shows the exciting force in the same wavenumber range, evaluated both directly
from integration of the diffraction pressure, and indirectly using the Haskind relations. Dif-
ferences between the two methods are noticeable in the vicinity of the resonant wavenumber,
where the diffraction exciting force has a very sharp peak. The bandwidth of the Haskind peak
is larger. The exciting force and damping vanish atk = 1·84. . .; a similar zero was noted in
[6] for cylindrical bodies with moon pools.

The precise wavenumber where resonance occurs depends on the number of panels, and
differs according as whether or not the irregular-frequency removal algorithm is, or is not,
used. Figure 9 shows the wavenumber at which resonance occurs in each case, determined
from the values ofk at which the added mass passes through zero and the other para-
meters achieve their maximum amplitudes. As the number of panels increases, both resonant
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wavenumbers tend to the correct theoretical value, with errors which appear to be inversely
proportional to the number of panels.

The curves in Figures 6–8 are based on computations using the discretization with 2048
panels on the body. Also shown are discrete points for the more accurate representation using
8192 panels on the body. Comparison of these results indicates that the 2048-panel discretiza-
tion gives results within graphical precision, except for small differences in the vicinity of the
resonant wavenumber. Comparison (not shown) with the results using 512 panels indicates
that these are less accurate, as expected. In general it appears that the computations converge
to the exact theoretical solution, except in the vicinity of the resonant wavenumber where a
more detailed comparison is required.

Figure 7. Amplitude of the free-surface elevation
at the moon-pool center for the body fixed in in-
cident waves. The dashed curves include irregular-
frequency effects, which are removed in the solid
curves. Both curves are based on computations using
the discretization shown in Figure 1 with 2048 pan-
els on the body. The×marks represent computations
with a total of 8192 panels on the body, and with the
irregular-frequency effects removed.

Figure 8. Heave exciting force coefficient based on
direct integration of the diffraction pressure (solid
curve) and on the Haskind relations (dashed curve).
Both curves are based on computations using the
discretization shown in Figure 1 with 2048 panels
on the body, and with the irregular-frequency effects
removed.

A theoretical explanation of the results in the vicinity of the resonant wavenumber can
be developed, along similar lines to the explanations of large finite added-mass and damping
variations [11, 12] for bodies in channels, or submerged beneath the free surface. Thus, we
assume that the solution matrix is singular, with a simple pole in the complex wavenumber
plane where the determinant of the discretized linear system is equal to zero. With the complex
time factor eiωt the pole is generally above the real axis, but for the exact McIver toroid the
pole is on the real axis, atk = k0 = j0,1. Each discretized body corresponds to a perturbation
of the toroid with the pole shifted above the real axis by a small distanceε. As the number of
panels tends to infinity,ε → 0. These assumptions imply that the velocity potential is of the
form

φ = φ̄(k)+ φ0

k − (k0+ iε) , (5)
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Figure 9. Values of the resonant wavenumber for
each discretization, showing the convergence to the
theoretical limitj0,1 = 2·4048. . . . The dashed curve
is based on computations including the irregular-
frequency effects, which are removed in the results
shown by the solid curve.

Figure 10. Added mass in the vicinity of resonance,
showing the convergence of results using 512 (dashed
curve), 2048 (solid curve), and 8192 (×) panels on
the body surface. The irregular-frequency effects are
removed in all cases.

whereφ̄(k) is bounded andφ0 does not depend onk. The integrated pressure force will have
a corresponding form.

For the heave radiation problem the nondimensional added-mass and damping coefficients
are the real and imaginary parts of the complex quantityA + iB. Since the complex force
coefficientA− iB is analytic in the lower half-plane, andB > 0, it follows that

A = Ā+A0
k − k0

(k − k0)2+ ε2
, (6)

B = B̄ + B0
ε

(k − k0)2+ ε2
, (7)

where Ā and B̄ are bounded,B0 > 0, andA0 = −B0. For ε � 1 these formulae are
consistent with the results shown in Figure 6. Thus, for increasing values of the wavenumber,
the added mass tends to a large positive value before changing sign abruptly, neark = 2·4, and
subsequently returns from a large negative value to normal positive values in accordance with
the estimate (6). This rapid variation occurs over a relatively broad range of wavenumbers,
determined by the magnitude ofA0 and independent ofε. On the other hand, the damping co-
efficient has a sharp ‘spike’ with bandwidth proportional toε and peak valueB0/ε, equivalent
to a finite delta function and consistent with (7).

The exciting forceX can be evaluated either directly, from integration of the diffraction
pressure, or from the radiation solution using the Haskind relations. For an axisymmetric
body the Haskind relations can be used to show that the damping coefficient is proportional
to |X|2, and thus from (7)

X = X̄ +X0

(
ε

(k − k0)
2+ ε2

)1/2

. (8)
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It follows that the singularity in the exciting force is weaker than for the damping coefficient,
but with the same property that the bandwidth is O(ε). Since the diffraction pressure is singular
in the same manner, the amplitude of the free-surface elevation in the moon pool is similar to
(8). This conclusion is consistent with the results shown in Figure 7, but not with the assumed
form of the potential (5), which has a stronger singularity. This contradiction suggests that the
singularity of the inverse matrix is orthogonal to the normal velocity induced by the incident
wave system at the resonant wavenumber. (Alternatively, one might consider the possibility
that the singularity of the potential is orthogonal to the normal componentnz on the body
surface, but that would imply a different form of the singular potential in the radiation and
diffraction problems, contradictory to the assumption that in both cases the singular solution
corresponds to the homogeneous solution of McIver and McIver [3].)

Figure 10 shows the added mass in the vicinity of resonance, and compares the results
based on the three different discretizations. Fork 6= k0 the results show convergence as the
number of panels increases, but ask→ k0 the number of panels must be increased to achieve a
given accuracy. With respect to the convergence of the damping and moon-pool resonance, the
magnitude of the computed peak values increase and the bandwidth decreases, with increasing
numbers of panels. However, the quantitative values are not considered to be reliable due to
the proximity to resonance. Examples of inaccurate results are the negative damping peak
shown in Figure 6(b), and the lack of agreement (not shown) between the peak values of the
exciting force computed from the diffraction pressure and from the Haskind relations.

4. Computational notes

The nonvertical profile of the McIver toroid at the free surface is a feature which requires
special attention in the computations. The use of a nonuniform discretization with relatively
small panels at the waterline, as shown in Figure 1, helps to alleviate this problem. In addition,
the logarithmic singularity in the free-surface Green function has been integrated analytically
over each panel, following the procedure outlined in [13]. In preliminary computations, per-
formed without removal of the logarithmic singularity, negative damping coefficients were
more prevalent in the vicinity of resonance.

The iterative solver normally used for the solution of the linear system did not give con-
sistent convergence in the vicinity of the resonant wavenumber and irregular frequencies. For
that reason, direct Gauss elimination was used for all computations.

The computations reported here were performed on a Pentium 200 MHz PC and on a DEC
Alpha 600 (5/33) workstation. Computing times ranged from a few seconds to a few hours per
wavenumber, depending on the number of panels and irregular-frequency option.

5. Discussion of results

The computational results presented here support and extend the analysis of McIver and
McIver [3]. The toroidal bodies illustrated in Figures 1 and 2, which coincide with the stream-
lines generated by a ring source, have singular hydrodynamic characteristics near the wave-
numberk = j0,1 where the ring source is wave-free. Since a homogeneous solution exists at
this wavenumber, the exact solutions of the radiation and diffraction problems are not unique.
The computations with increasing numbers of panels give a sequence of results which are pro-
gressively more singular. The hydrodynamic parameters converge, with increasing numbers of
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panels, provided the wavenumber differs fromk0 by a fixed amount. Ask→ j0,1 the number
of panels must be increased to achieve a specified accuracy. The values ofk = k0 where the
computed results are singular converge to the theoretical valuej0,1.

The damping, exciting force, and elevation in the moon-pool all exhibit sharp peaks with
narrow bandwidth at the resonant wavenumber. The spectral area associated with the damping
peak appears to tend to a finite limit as the number of panels increases, suggesting that this
singularity is equivalent to a delta function. The exciting force and moon-pool elevation have
weaker singularities, and their spectral areas decrease with increasing numbers of panels.
These conclusions are somewhat speculative, since the numerical solution is inaccurate within
the narrow range of wavenumbers where these parameters are singular.

The singularity of the added mass is fundamentally different. As indicated in (6) this para-
meter has a simple pole, with variation between large positive and negative values occurring
over a relatively broad bandwidth which does not decrease as the number of panels increases.
This is confirmed by the comparisons shown in Figure 10, and there is no uncertainty in the
quantitative values of these curves. Thus one can determine the ‘residue’ coefficientA0 ' −4
in (6) with some confidence. This implies a spectral area of the damping-coefficient delta
function equal to 4π , remarkably close to integrated values from the computed values of
the damping coefficientwithout removal of the irregular frequency effects. With the irregular
frequencies removed, the peak values of the damping are negative, and thus cannot be used
reliably. No explanation has been found for this inconsistency, but it does serve as an example
of the singular nature of the McIver toroid, and the effect of the homogeneous solution which
exists at the critical wavenumber.

The results shown in Section 3 are for the toroid with inner radiusb = 0·2 and outer
radiusa = 2·49. For larger values ofb the outer radius decreases, and conversely, as indicated
in Figure 2. The resonant wavenumber is unchanged, but the irregular frequencies increase
whena decreases, and vice versa. Whenb ' 0·25 the first irregular frequency is practically
coincident with the resonant wavenumber. Limited computations have been performed in
this regime, with and without removal of the irregular-frequency effects. In the latter case
the moon-pool elevation contains two adjacent peaks which are relatively broad, where one
corresponds to the irregular frequency and the other to the resonant wavenumber. These appear
to remain distinct from each other asb is varied by small amounts, rather than coalescing into a
single peak. With the irregular-frequency effects removed a single resonant peak is recovered,
similar to the solid curve in Figure 7 but with a narrower bandwidth.

All of the results presented here are for the case of infinite fluid depthh. Qualitatively
similar results have been computed forh = 1, using the corresponding profile shown in
Figure 4. No computations have been performed for the submerged ring source, where the
geometry is specified by the curves in Figure 3, but no fundamental difficulties are anticipated
and similar results are expected. Similar results are also expected for the higher-order resonant
wavenumbersk = j0,m corresponding to axisymmetric standing waves in the moon pool, and
for higher-harmonic modes, corresponding to the more general body shapes described in [3]
and [4].
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